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Abstract. Explicit self-similar solutions are systematically obtained for a non-linear 
diffusion equation with a diffusinn coefficient that depends exponentially on the transported 
magnitude ( D ( u )  = K ,  ea"), for some boundary conditions associated with the parameter 
A of the transformation group. Group elements under which the Hamiltonian of this 
physical system remains invariant enable us to find new magnitudes which remain invariant 
under transformation for each specific A value in turn. This allows physical properties of 
the system to be established. The sign of a limits the possibility of obtaining self-similar 
solutions in any kind of diffusion process for those group elements belonging to the open 
interval ( 0 , f ) ;  if a > 0 then only self-similar solutions for absorption processes will be 
found and if a < 0, only the cession processes will possess self-similar solutions. The value 
A = 0 leads to an analytic solution to the problem with free boundaries (the Stefan problem). 

1. Introduction 

The study of non-linear transport phenomena in theoretical and experimental physics 
is generating much interest due to the many situations in Nature that must be described 
within this framework. An investigation of the general aspects of this type of problem 
is therefore very useful in order to apply the conclusions to individual cases. 

This behaviour is well described using a non-linear diffusion coefficient in the 
corresponding transport equation. In this work an exponential dependent on the 
transport magnitude is chosen as it is the commonest situation in physical systems [ 11. 
In order to obtain the information desired using this working hypothesis, the transport 
equation under consideration is written as 

a u / a t  = div(K, exp(au) grad U )  (1) 

with U the transport variable, K ,  an arbitrary constant dependent on each individual 
case, and (Y the degree of non-linearity of the system. (Y was chosen as a real number 
due to the evidence of increasing and decreasing diffusion coefficients within the 
transpofl magnitude. We shall consider the usual one-dimensional frame; in this way 
the solutions of equations (1) are obtained more simply and it is then very easy to 
extend the results to more complex symmetries. 

In 8 2 we give an outline of the method used in this paper. Our philosophy is to 
study the problem thoroughly from an analytical point of view in order to simplify it, 
using the transformation group technique as far as possible, and turn to numerical 
methods if compelled to by the nature of the solution [2-51. This allows us to transform 
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a partial differential equation into an infinite family of ordinary differential equations 
which depend on only one parameter. 

A functional transformation is applied to the transport equation to give us a greater 
number of solutions than if we had applied the stretching group technique directly to 
equation ( 1 ) .  This transformation is defined by 

where uo is a reference value of the transport magnitude. By substituting ( 2 )  into (1) 
we obtain a new partial differential equation in which the properties of the physical 
system are characterised by a diffusivity coefficient. In this way, the degree of non- 
linearity has been reduced, and the equation takes the form 

dzldt = Kz d2z/dx2 (3) 

in which the diffusivity demonstrates a linear dependence on the new magnitude z , 
defined by 

z = 1 + f f u *  (4a) 

K = K1 exp( suo). (4b) 

The variable z contains information about the transport magnitude u as well as the 
value of a, which influences the evolution of the system. 

Obviously, since we are dealing with energy, matter, etc, the transported magnitude 
( u ( x ,  t )  3 0 )  will always be positive, leading to 

f f > O  z (x ,  t ) z  1 

ff < O  z (x ,  t )  E [ O ,  11. 

As a result of leaving each boundary condition invariant under the transformation 
group, a single parameter value is selected [ l ] .  

In 0 3, we shall demonstrate that this type of solution represents the asymptotic 
state of a large set of initial conditions in the problem. In 0 4  we obtain particular 
solutions for the set of boundary conditions associated with parameter values included 
in the closed interval [0,1]. 

(A) Isolated semi-infinite system subjected to an energy pulse, matter or movement 
quantity at the initial instant. 

(B) Semi-infinite system subjected to a constant flow of energy, matter, etc at the 
exterior contact boundary. 

(C) Finite system subjected to a free boundary process. 
New physical magnitudes which remain invariant under the transformation group 

are found when the physical system is submitted to a boundary condition associated 
with parameter values belonging to the open interval (0,i). 

2. Transformation group technique 

A finite group of transformations is chosen because it is easier to apply than the 
corresponding infinitesimal group, and the results are equivalent [ 13. 
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Let us define the following one-parameter group: 

z = apz 
3 = aqx 
I =  amt  

where a is the parameter of the group and p ,  q and m are real constants yet to be 
determined. Now, equation (3) is required to be formally invariant under the applica- 
tion of (5a ) - (5c ) .  This invariance produces relations involving p ,  q and m parameters, 
and these determine a particular element of the group [6]. The invariance leads to 
the relation 

p - 2q + m = 0. ( 6 )  
For the sake of simplicity one can take q = Am. In this way, the independent invariants 
of the group are 

J = z (  t /  T)(1-2A) 

5 = X (  t /  T)-* 
( 7 a )  

(7b) 
where either J or 5, or any function of them, are invariants. T is a characteristic time 
in the evolution of the system and the origin of time should be taken conventionally 
at t = T. This is a suitable choice because for t = T the invariants become 5 = x, J = z 
and the two spaces coincide at the initial time. 

In order to obtain invariant solutions [6], we assume 

z(x, t )  = ( t /  T)@A-y(() (8) 
f(5) being an arbitrary function of the new variable 5. If we define y = KTJ and then 
substitute ( 7 a )  and (7b)  into (3), we obtain the reduced equation 

Briefly, the one-parameter group (5a ) - (5c )  has allowed us to transform a non-linear 
partial differential equation into an infinite family of quasilinear ordinary differential 
equations which are characterised by an arbitrary real parameter A. In this way, if a 
solution y =f(5) is found for equation (9) the corresponding solution to equation (1) 
is obtained by taking the inverse transformation 

U = ( l / a )  log[(y/KT)(t/T)‘2A--”] ( l o a )  
x = 5( t /  7-y. ( l o b )  

Note that if the transformation group is applied directly to equation (l), a single 
invariant is obtained in ( 7 a )  and (7b), corresponding to the value A = i, which generates 
only one ordinary differential equation, the solution of which has been already found 
by another method [7] .  Therefore the number of solutions would be drastically reduced. 
Thus, using the present method, it is possible to obtain an infinite family of equations 
and the solution mentioned above is the member of this family corresponding to A = 4. 

The parameter A is determined when the temporal behaviour of some physical 
magnitudes is fixed [l]. Since these magnitudes should remain invariant under the 
transformation group, the solution will be compatible with the defined group. The 
method described for determining the value of the parameter A can be generalised to 
an arbitrary and extensive set of boundary conditions, which accounts for a larger 
number of solutions by means of application of the transformation group. 
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3. Type of solutions 

From the reduced equation (9) we can obtain a set of solutions which are singular, 
because part of the information contained in equation (1) was lost when we eliminated 
the time variable. Now the objective is to discover whether these singular solutions 
are never representative of regular solutions or, in contrast, are highly representative. 
For example, these solutions could tend asymptotically to the regular solution as t 
increases. 

To tackle this problem, we are going to use another kind of transformation group 
[ 5,8,9], the so-called quasi-invariance group of transformations, where the require- 
ments are weaker and  there is no reduction of variables in the system. Thus the 
transformed equation explicitly contains all temporal or  spatial modifications imposed 
on the system. 

Let us define the following transformation group: 

x = C ( t ) &  ( 1 l a )  

t = Q ( t )  (1lb)  

= A ( t ) 4 ( &  Q )  (1lc)  

where the characteristic parameters are time functions which produce a new family of 
partial differential equations, the coefficients of which are also temporal functions. By 
substituting (1 1 a) - (  11 c) into (3) we obtain 

where the dot indicates a time derivative. 
Now, in order to determine the most convenient elements of the transformation 

group, we impose two requirements concerning the system evolution in the new space 

(i) the system, described in the space 4, [, 0, must conserve the Hamiltonian 

(ii) the new temporal scale must be taken so that the system reaches its asymptotic 

The first assumption fixes the value of A ( t )  and C ( t )  in the form 

(4 ,  t, 0 ) :  

formalism; 

state in a finite time. 

c( t )  = ( t /  T ) A  

A( t )  = ( t /  T)”””. 

The second condition is verified when the coefficient of the right-hand side of (12) 
goes to zero as t goes to infinity. In this way, the Q ( t )  function must satisfy 

C 2 6 / A  = ( t /  T)-’ Y > O  (14) 

Consequently, it may be seen that the evolution interval in the new space is [0, l /y] ,  
whereas the corresponding real time is [ T, CO]. y is chosen on the condition that the 
coefficient of a 4 / a O  in (12) goes to zero and  it is possible irrespective of the asymptotic 
behaviour of the system in the new space. In this way, by studying the solutions in 
the neighbourhood of Bli, = 1/ y, the information obtained represents the asymptotic 
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state of the system in the original space. By examining (12) in the light of the above 
results, we find a new partial differential equation 

which is of the same type as (9); in fact they are coincident as t + c o  because for 
physical situations dd , /de  does not grow to infinity, which enables us to require that 
the particular solutions obtained from (9) are the asymptotic solutions of (12) whatever 
the initial conditions. 

4. Self-similar solutions associated with some boundary conditions 

We shall now study particular solutions of the non-linear equation (1) with the following 
associated boundary conditions in semi-infinite and infinite media. 

(A) Semi-infinite medium. The total transfer of energy, matter, etc to the physical 
system through the contact frontier from the exterior medium is carried out by a source 
plane at the initial instant: 

Qo = lom U dx = cte v t. 

The spatial distribution of the transported magnitude is considered to satisfy the 
conservation laws. This condition allows us to suppose that, at the initial instant, all 
energy, matter, etc is concentrated on the border. This can be expressed mathematically 
by 

U ( X ,  0) = QoS(x) (18) 

where S ( x )  is the Dirac distribution function. 
(B)  Semi-infinite medium. The flow of energy, matter, etc between the physical 

system and the exterior medium through the contact frontier is constant at all times: 

FO = - K ,  exp(au(0, t ) )  v t. (19) 

(C) Finite medium. A flow of energy is supplied to a finite medium with a free 
boundary 

u ( x i ( t ) ,  t )  = uo v t .  (20) 

4.1.  Self-similar solutions associated with boundary condition A 

Equation (1) with the boundary condition (17)  is rewritten in the form 

2 = lom $ dx = [ K ,  exp ( a u  ) V t  

which allows us to specify the way in which the gradient function behaves at extremes 
of the system. If the system remains isolated after application of the perturbation then 

(22) 



424 Y Cerrato, J Gutierrez and M Ramos 

This condition also requires that the gradient function be equal to zero at infinity in 
order to satisfy relation (21), and so 

In the new space that defines the transformation group, the variable y ( t )  should 
satisfy the following boundary conditions: 

as can be deduced from applying the independent invariants of the transformation 
group and the functional transformation to (23). 

We must find those values of A which lead to differential equations whose solutions 
satisfy the conditions imposed by (24). As we shall show, the set of equations 
characterised by values of A in the open interval (0,;) provides a solution that satisfies 
the zero gradient function condition at the extremes of the system. If 0 < A  <$, the 
family of equations (9) can be rewritten as 

y d2y/dt2+Atdy/d.$+12A -1ly=O. (25) 

Since y ( t )  is defined positive, equation (25) requires the defined solution to be strictly 
decreasing since the first- and second-order derivatives cannot both be simultaneously 
positive. 

The boundary condition (24) requires that the gradient function at 8 = 0 be zero, 
and imposes an upper limit on the solution function at that point, since 

When the solution function decreases at points close to the origin the first derivative 
will take negative values, inducing the second derivative to tend toward zero in 
accordance with equation ( 2 5 ) .  There are two ways in which the second derivative 
may approach zero: 

Let us now study each of these options in turn. 
The option y ( & )  # 0 can present the following possibilities: 

Case(c) - d2y never reaches zero. 
d t 2  
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If case (a) occurs and the spatial second derivative of the function reaches zero at 
a finite distance from the origin, the function gradient takes the value 

enabling us to determine how the second derivative evolves at subsequent points: 

Positive values for the second derivative function induce a decrease in the negative 
growth of the gradient and make it tend toward zero. If we suppose that the gradient 
reaches zero at Q > ti then, since the second derivative remains positive for reasons 
of continuity, this position would correspond to a minimum for the solution function. 
There are only two possibilities for the behaviour of the solution function beyond 6: 
to grow or to stay at its minimum value. The first option is incompatible with differential 
equation (25) so, once the solution function reaches its minimum it remains there. 
Therefore, if the spatial derivative of the function is zero at = 6, all points & > tj are 
not reached by the perturbation and it satisfies the requirement 

If case (b) occurs, the spatial second derivative of the function reaches zero at 
infinity so it must be verified that 

€'X lim(A[dy/dt+(2A - l ly)=O. (29) 

Therefore, in order to maintain the physical criteria, the limits 

lim(At dy /d t )  = 0 (30) 5-oj 

lim ( ( 2 h  - 1 Iy) = 0 
(.-I X 

cause both the function y ( 8 )  and its gradient to become zero at 5 = infinity. Once 
more our requirement of a zero gradient at infinity is satisfied. 

The last possibility, case (c), that we noted for the behaviour of the spatial second 
derivative of the function carries us to a nonsense. If equation (25) must be satisfied, 
at least at infinity, the function and all its derivatives must be zero. 

We now examine the second option, namely 

Under these conditions, and according to (25), we must comply with 

Since ti # 0, the spatial derivative of the function at 5 = ti must be zero and, as we 
have already found, once the minimum is reached, the function remains at that 
minimum. 
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This superficial analysis has allowed us to find the set of differential equations 
which generates the solutions corresponding to the boundary condition (24). Any one 
of them fulfils the requirement of maintaining the quantity Qo constant in real space. 
This set of equations has the peculiarity that each value of A leaves a new physical 
magnitude invariant. In order to select the adequate parameter and so fix the particular 
asymptotic solution determining the evolution of the diffusion process we are studying, 
it is necessary to analyse the behaviour of these new magnitudes in the physical system. 

Next, some physical magnitudes that remain invariant under the transformation 
are detailed [lo], depending on the value assigned to the parameter, within the 
considered interval. 

(i) When A =', the physical magnitude defining the integral function, 

M = lom exp( a u )  dx  = cte V t  (33) 

remains invariant under this element of the transformation group. Effectively, and 
since y d[ = cte at all times, 

when A = f .  

condition we are examining, the evolution of the perturbation is determined by 
If a physical system satisfies condition (33) and is submitted to the boundary 

y-+f[-+fy d2Y dY =o.  
d t 2  d 5  

Equation (35) has no class C solution, so it is solved by numerical calculations. 
(ii) When A = a  the physical magnitude defining the integral function, 

N = lom x exp(au)  dx = cte V t  

(35) 

remains invariant under this element of the transformation group. Effectively, since 
[y d t  = cte at all times, 

(37) 

when A =a. 
The study of the behaviour of the physical system against this magnitude is carried 

out by analysing its temporal variation, because of the divergence presented by the 
function (36). The evolution of the perturbation is determined by 

Equation (38) is solved by numerical calculations. Figure 1 shows the numerical 
solutions generated by equations (35) and (38), and so displays the zero value for the 
gradient at the extremes of the system, which is a necessary condition for solution 
under the boundary condition A. 
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X 

Figure 1. Numerically calculated solutions of equations (35) and (38). Both solutions 
manifestly satisfy the zero gradient condition at the boundary of the physical system 
(boundary condition A). 

As we are interested in finding the solutions in (U,  x, t )  space, we shall study the 
influence of the parameter a on the above solutions, through the gradient function of 
the transported magnitude 

d U  dY 
ax a y  dS 

- ( t / T ) - * -  (39) 

since the spatial derivative of the function is always negative or zero as a result of 
equation ( 2 5 ) ;  the type of diffusion process under study is limited by the value of a. 
Self-similar solutions can only be obtained under the following conditions: 

a>O 

a<O 

absorption processes, since duldx < 0 always 

cession processes, since duldx > 0 always. 

As illustrative examples, we show, in figures 2 and 3, the temporal evolution of the 
transported magnitude in an absorption process in a medium characterised by Q > 0 
which also satisfies the conditions (33) and (36), respectively. 

4.2. Self-similar solutions associated with boundary condition B 

The boundary condition (19) is rewritten in the transformed space: 

This condition must remain invariant, which requires the parameter A to take the value 
1 .  The reduced equation takes the form 

d2Y dY 
d t 2  d6 

y -+ 6-- y = 0. 

Since equation (41) has no class C solutions, numerical methods are used to solve it. 
It is interesting to note that the same physical system does not behave symmetrically 

when faced with absorption or cession processes of flow phenomena. 
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600 

I 

0 50 100 150 200 
X 

Figure 2. Temporal evolution for a diffusion process 
subjected to boundary condition A when the medium 
is characterised by a 1 0  and maintains the magni- 
tude defined by (33) invariant through time ( M =  
j F e x p ( a u ) d x ;  f ,=T,  r2=10T, t3=30T; A=:, a =  
0.01, l / K T =  1). 

. - 
0 66 133 200 266 

x 

Figure 3. Temporal evolution of a diffusion process 
subjected to boundary condition A in a medium 
characterised by a > 0. The medium maintains the 
magnitude defined by (36) invariant through time 
( N  =j: x exp(au)  dx;  f ,  = T, tz  = lOT, f, = 30T; A = 
a, a = 0.01, 1/ KT = 1). 

When the spatial derivative of the function is less than zero at the origin a peculiar 
solution is generated, because of the sign change presented by the gradient at points 
close to the origin. The solution for equation (41) manifests an extremely non-linear 
behaviour in the medium. The region close to the origin absorbs or cedes flow 
proceeding from either the system or its neighbours depending on whether a > 0 or 
a <O, respectively. Figure 4 presents the temporal evolution of a physical system 
characterised by a < 0. 

If the spatial derivative of the function is greater than zero at the origin (figure 5), 
an infinite flow is required at the border and a finite flow in those points that are 

0 7.5 15 22.5 30 
X 

Figure 4. A medium characterised by a < O  when 
subjected to a diffusion process with constant flow 
cession at the border (boundary condition B) pres- 
ents highly non-linear behaviour. The system does 
not evolve beyond the position predetermined by the 
boundary condition ( t ,  = T, t ,  = 2T,  t3 = 5T; A = 1, 
a = -0.01, 1/ K T =  0.01). 

1500 

1125 

U 

750 

375 

0 

L 

0.1 0.2 0.3 0.4 
X 

Figure 5. The temporal evolution of a diffusion pro- 
cess in a medium characterised by a < O  when it is 
subjected to a constant flow absorption process at 
the border (boundary condition B). Threshold 
energy is required to initiate evolution ( t ,  = T, t, = 
5 T ,  t 3 = 1 0 T ;  A = l ,  a=-0 .01 ,  l / K T = l ) .  
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infinitely close to the border, so that the system is perturbed, as can be deduced by 
studying equation (41 ) .  

In both situations, the physical system presents the same behaviour: the medium 
does not evolve beyond a position that is predetermined by the flow boundary condition. 

4.3. Self-similar solution associated with boundary condition C 

The free boundary problem in a medium with a linear behaviour was studied by 
Bluman [ 4 ] .  We solve the same problem when the medium presents the type of 
non-linearity that we study here. The boundaries of the finite medium are defined at 
the initial instant by 

x , ( t =  T)=O ( 4 2 a )  

x2( t = T )  = L ( 4 2 b )  

when the domain of the spatial variable is defined by 

and the boundary condition that should satisfy equation (1) is 

u ( x i ( t ) ,  t )  = u0 Vt .  (44 )  

Once the solution generated by conditions ( 4 2 a ) ,  (42b)  and (44 )  is known, the 
flow needed to develop the diffusion process is also known, since it depends on the 
penetration velocity of the border. Making use of the independent invariants ( 7 a )  and 
( 7 b ) ,  the boundary conditions are rewritten 

x = [( t /  T)”. (45 )  

The imposition of invariance on the free boundary selects zero as the value for A and 
the reduced equation takes the form 

d2Y y-+y = 0. 
d t 2  

Equation (46 )  has a class C solution, the trivial solution y ( 5 )  = 0 and the general one 

Y ( 5 )  = i ( a  + b5-  t2).  

x (  t )  = i { b  + [ b 2 + 4 ( a  - 2Kt) l”’ ) .  

U( t )  = 2 K / (  b -2x (  t ) )  

( 47 )  

(48 )  

(49 )  

Border evolution is described by 

Equation (48 )  permits us to find the propagation velocity for the borders 

and the duration of the diffusion process 

t = ( b 2 + 4 a ) / 8 K .  (50) 
The influence of the parameter a on these solutions can be studied from the 

temporal variation for the transported magnitude 

au 
-= a t  -(l/cut) v x. 
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I l l  
0 4.3 0 . 6  12.9 17. 2 21.5 

X 

Figure 6. Temporal evolution of a process with free boundaries (boundary condition C) 
in a finite medium characterised by cy > 0. The system cedes energy until reaching equili- 
brium with the external medium ( t ,  = T, t2 = 3 T, t j  = 5 T ;  h = 0, cy = 0.01, 1/ KT = 1). 

This result restricts the application of the method to the following situations: 

solutions; 
(i)  if LY < 0 then au/at  > 0 and only absorption processes possess self-similar 

(ii) if (Y > 0 then a u / d t  < 0 and only cession processes possess self-similar solutions. 
Figure 6 shows the temporal evolution of a physical system characterised by a > 0 

in an energy cession process. 

5. Conclusions 

This method reduces the mathematical complexity of the non-linear problem, and 
makes it possible to apply numerical methods so that instability and other inherent 
problems are avoided. Both the functional transformation on the problem equiition 
and the subsequent formal invariance under one-parameter transformation groups 
allow us to define a set of new variables in the physical system, which enable us to 
describe this evolution, through a family of non-linear ordinary differential equations. 
On the other hand, the choice of adequate variables (independent invariants of the 
group) in each case is determined by boundary conditions and this fixes solutions 
unambiguously. 

Although, in principle, the reduction of the number of independent variables in 
the equation implies a loss of information, the solutions derived from the reduced 
equation are representative of the asymptotic behaviour of the physical system under 
any perturbation of an extensive set of initial conditions which corresponds to the 
same boundary condition. 

Self-similar solutions for boundary conditions associated with parameter values 
belonging to the closed interval [0, 11 have been obtained. This interval generates a 
set of differential equations that produce convergent solutions, i.e. they define evolutions 
of the physical system that tend to reach a perturbed equilibrium. 

The elements of the transformation group that corresponds to values of A in the 
open interval (0,i)  present the following properties when they are applied to equation 
(3): any element of the group leaves invariant the boundary condition defined by (17), 
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while each particular value leaves different physical magnitudes invariant, like those 
defined by (33) and (36). A study of the behaviour of the system against these 
magnitudes permits the adequate differential equation to be fixed. This adequate 
differential equation generates the solutions that correspond to the boundary condition 
supporting the medium. 

The sign of (Y limits the possibility of studying any diffusion process in the open 
interval (0,;): 

if a>O absorption processes 

i f a < O  cession processes 

The problem of a free boundary in a finite medium, which corresponds to the 
parameter A being zero, is completely studied since the resulting differential equation 
possesses a class C solution and therefore it allows us to find the position and velocity 
of the border, and the duration and energy needed for evolution of the process. These 
solutions are of great interest for the food industry in the manufacture of solid elements 
and in freezing. 

The fact that a system does not evolve beyond a position that is predetermined by 
a constant energy flow at the border determines the exponential non-linearity for the 
diffusion coefficient of the medium. This property has been corroborated by the analysis 
of experimental data [ 1, 111. 

We remark that some media that are nonlinear with regard to diffusion phenomena, 
and which are normally treated by the addition of new phenomenological terms to the 
linear model, can be analysed by modelling a non-linear equation with this type of 
diffusion coefficient [ l ,  111. 
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